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Interfaces have a variety of boundary conditions (or jump conditions) that need to
be enforced. The Ghost Fluid Method (GFM) was developed to capture the bound-
ary conditions at a contact discontinuity in the inviscid Euler equations and has
been extended to treat more general discontinuities such as shocks, detonations,
and deflagrations and compressible viscous flows. In this paper, a similar boundary
condition capturing approach is used to develop a new numerical method for the
variable coefficient Poisson equation in the presence of interfaces where both the
variable coefficients and the solution itself may be discontinuous. This new method
is robust and easy to implement even in three spatial dimensions. Furthermore, the
coefficient matrix of the associated linear system is the standard symmetric matrix
for the variable coefficient Poisson equation in the absence of interfaces allowing for
straightforward application of standard “black box” solvers.c© 2000 Academic Press

1. INTRODUCTION

The “immersed boundary” method [20] uses aδ-function formulation to smear out the
solution of the variable coefficient Poisson equation on a thin finite band about the interface;
see [21] for details. In [23], the “immersed boundary” method was combined with the level
set method, resulting in a first order numerical algorithm that is simple to implement even
in multiple spatial dimensions. However, the numerical smearing at the interface has an
adverse effect on the solution, forcing continuity at the interface regardless of the appropriate
interface boundary conditions. That is, the numerical solution is continuous at the interface
even if the actual boundary conditions imply that the solution should be discontinuous.
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The “immersed interface” method [10] is a second order numerical method designed to
preserve the jump conditions at the interface in contrast to the numerical smearing intro-
duced by theδ-function formulation of the “immersed boundary” method. The “immersed
interface” method incorporates the interface boundary conditions into the finite difference
stencil in a non-trivial way that preserves jumps in both the function and its derivatives.
However, this algorithm is fairly complex and has only been extended to three spatial di-
mensions for the simple case of a stationary interface [12]; i.e., the method has not yet been
extended to treat three dimensional moving interfaces. Furthermore, the corresponding lin-
ear system that needs to be solved is not symmetric, dramatically reducing the number of
standard fast linear solvers that can be utilized with this method, although it should be noted
that one fast solution technique was used in conjunction with this method in [11]. In contrast,
theδ-function formulation of the “immersed boundary” method has a corresponding linear
system whose matrix is symmetric, allowing a wide range of standard fast linear solvers to
be utilized.

Another notable technique, presented in [7], is a second order accurate numerical method
that preserves jumps at the interface with a resolution comparable to that of the “immersed
interface” method. A clever premise underlying this method is the ability to smoothly
extend the solution outside the physical domain into a fictitious domain and to use these ex-
tended values in the numerical method. While this method suffers from a non-symmetric
linear system and the usual difficulties that this introduces, the authors did show that the
method was compatible with both multigrid and adaptive mesh techniques. However, [7]
addressed only Dirichlet boundary conditions and did not extend the method to treat interface
jump conditions.

It should be noted that the idea of using extended values and fictitious domains is not
new; e.g., [14, 15, 17] used similar ideas to solve the Laplace equation on irregular domains
with the help of integral equations. That is, a system of integral equations is solved, and
then the results are used in the discretization of the Laplacian. In [18], a fast version of this
algorithm which depends in part on the fast algorithms for computing the integrals [16] was
presented. The interested reader is also referred to [5] for more details on fast methods for
the integral equations.

In [3], the Ghost Fluid Method (GFM) was developed to properly treat the boundary
conditions in [19], removing the spurious oscillations shown in [9]. The GFM was originally
designed to treat contact discontinuities in the inviscid Euler equations, but it was generalized
to treat shocks, detonations, and deflagrations in [2] and compressible viscous flows in [4].
The generalized GFM captures the appropriate Rankine–Hugoniot jump conditions at an
interface without explicitly enforcing these jump conditions. Instead, the GFM creates an
artificial fluid which implicitly induces the proper conditions at the interface. In the flavor
of the level set function which gives an implicit representation of the interface, the GFM
gives an implicit representation of the Rankine–Hugoniot jump conditions at the interface.
Since the jump conditions are handled implicitly by the construction of a ghost fluid, the
overall scheme becomes easy to implement in multidimensions.

In this paper, a similar boundary condition capturing approach is used to develop a new
numerical method for the variable coefficient Poisson equation in the presence of interfaces,
where both the variable coefficients and the solution itself may be discontinuous. This new
method is implemented using a standard finite difference discretization on a Cartesian grid,
making it simple to apply in as many as three spatial dimensions. Furthermore, the coeffi-
cient matrix of the associated linear system is the standard symmetric matrix for the variable
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coefficient Poisson equation in the absence of interfaces allowing for straightforward ap-
plication of standard “black box” solvers. Most importantly, this new numerical method
does not suffer from the numerical smearing prevalent in theδ-function formulation of the
“immersed boundary” method. In fact, the new method preserves jumps at the interface
with a resolution comparable to that of the “immersed interface” method. See [13] for a
theoretical justification of this new method.

Before proceeding, a few comments on the need for yet another new method may be in or-
der, especially since this new method is only first order accurate. First and foremost, note that
the second order accurate methods have not yet achieved widespread success. For example,
the “immersed interface” method is more a strained attempt to satisfy truncation error for
static two dimensional interfaces than a robust second order method. That is, the immersed
interface method has not yet been applied to three dimensional problems with moving in-
terfaces or to the multiphase Navier Stokes equations in any dimension. Furthermore, when
it was applied to the Hele–Shaw problem in [6], the solutions quickly degenerated to first
order accuracy even though new ad hoc fixes were used in the discretization. Because of
these complications, the first order “immersed boundary” method is the only scheme that is
currently used for complex numerical simulations such as the three dimensional multiphase
Navier–Stokes equations. However, the immersed boundary method has problems of its
own. For example, the immersed boundary method cannot produce discontinuous solutions
and thus is unable to properly model the jump in pressure due to surface tension forces
in the Navier–Stokes equations. Various authors have avoided this problem by treating the
pressure as a continuous function and adding new source terms to the momentum equa-
tions; see for example [1, 23, 24]. Unlike the immersed boundary method, our method can
be used to obtain discontinuous solution profiles as will be shown in this paper. Further-
more, we note that our new method can be used to model the Navier–Stokes equations
directly, i.e., without the addition of source terms to model the effects of surface tension
[8].

2. EQUATIONS

Consider a Cartesian computational domain,Ä, with exterior boundary∂Ä and a lower
dimensional interface,0, that divides the computational domain into disjoint pieces,Ä−

andÄ+. The variable coefficient Poisson equation is given by

∇ · (β(x)∇u(x)) = f (x), x ∈ Ä
u(x) = g(x), x ∈ ∂Ä, (1)

wherex= (x, y, z) are the spatial dimensions,∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z) is the divergence operator,

andβ(x) is presumed to be continuous on each disjoint subdomain,Ä− andÄ+, but may
be discontinuous across the interface0. Furthermore,β(x) is assumed to be positive and
bounded below by someε >0.

The jump conditions or internal boundary conditions are specified along the interface0

as

[u]0 = a(x), x ∈ 0
[βun]0 = b(x), x ∈ 0, (2)
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where

[u]0 = u+(x)− u−(x)
(3)

[βun]0 = β+(x)u+n (x)− β−(x)u−n (x)

specifies the direction of the jump with the “±” subscripts referring toÄ±. Note that
un=∇u ·N is the normal derivative ofu, whereN is the local unit normal to the interface.

Equation (1) uses Dirichlet boundary conditions for illustration purposes only, as the
boundary conditions on∂Ä are not crucial to our numerical method. In fact, it takes little
effort to replace the Dirichlet boundary conditions with Neumann boundary conditions,
reformulating the Poisson equation as

∇ · (β(x)∇u(x)) = f (x), x ∈ Ä
un(x) = g(x), x ∈ ∂Ä, (4)

throughout the text.

3. NUMERICAL METHOD

Since the interface can have a fairly complex shape, the interface location is represented
by the zero level of a signed distance function; i.e., a level set representation of the interface
is used [21].

3.1. One Dimension

Consider the unit domainÄ= [0, 1] where the interface is a single point0= 0.5 with
a level set representation ofφ= x− 0.5, so that the interface location is recovered when
φ= 0. Sinceφ is the signed distance function, the set of all points whereφ <0 and the set
of all points whereφ >0 represent two disjoint subdomains,Ä− andÄ+, respectively. For
the numerical algorithm, one needs to identify whether a given point is located inÄ− or
Ä+, which is determined by considering the local sign ofφ, unlessφ= 0 implying that the
point is located directly on the interface itself. Since the interface is a lower dimensional
set, this situation can be rectified by definingÄ− as the set of all points whereφ≤ 0 and
Ä+ as the set of all points whereφ >0, so that no points lie directly on the interface.

The computational domain is discretized into cells of size1x where the cell centers
are referred to as grid points or grid nodes, with thei th grid node located atxi . The cell
edges are referred to as fluxes so that the two fluxes bounding thei th computational cell are
located atxi±1/2. The solution to the Poisson equation is computed at the grid nodes and is
written asui = u(xi ). An analogous definition holds forfi , gi , and the level set functionφi .
In general, interfaces move throughout the grid asφ evolves in time, and a reinitialization
procedure is needed to maintainφ as an approximate distance function [22]. Sinceφ is
known only at the grid nodesxi , the value ofφ at fluxes is defined by the linear average of
the nodal values; e.g.,

φi+1/2 = φi + φi+1

2
(5)

is a second order accurate approximation toφ at the flux located between thei th and (i + 1)st
cells.
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The level set function is used to define the unit normal as

N = ∇φ|∇φ| , (6)

where the normal is computed at each grid node using central differencing. For example,

Ni =
(
φi+1− φi−1

1x

)/∣∣∣∣φi+1− φi−1

1x

∣∣∣∣ = (φi+1− φi−1)/|φi+1− φi−1| (7)

in one spatial dimension. Note that the denominator in equation 7 could be identically zero
in certain rare situations, but the numerical method does not make use of the normal in these
situations. Whenφ= x− 0.5, Eq. (6) implies thatN= 1 everywhere so thatun= ux.

3.1.1. The Laplace Equation

Consider the one dimensional Laplace equation withβ = 1 and f (x)= 0 given by

uxx = 0 (8)

with fixed Dirichlet boundary conditions on∂Ä. Ignoring the interface, or equivalently
setting [u]0 = [ux]0 = 0, the exact solution is merely a straight line connecting the two
fixed points on∂Ä. For example, if the boundary conditions areu(0)= 0 andu(1)= 1 then
the solution isu= x on [0, 1]. The standard second order discretization[(

ui+1− ui

1x

)
−
(

ui − ui−1

1x

)]/
1x = 0 (9)

can be used to solve this problem. For each unknown,ui , Eq. (9) is used to fill in one row
of a matrix, creating a linear system of equations. Since the resulting matrix is symmetric,
a wide variety of fast linear solvers can be used. For linear solvers that require an initial
guess, setting allui identically zero is usually sufficient.

Next consider [u]0 = 1 and [ux]0 = 0 with Dirichlet boundary conditionsu(0)= 0 and
u(1)= 2 yielding an exact solution ofu= x in [0, .5] andu= x+ 1 in (.5, 1] wherex= 0.5
is included inÄ− as previously discussed. Consider the exact solution. Ifxk andxk+1 are
the nodes adjacent to the interface, one can see that (uk+1− uk)/1x is O(1/1x), while all
the other terms of the form(ui+1− ui )/1x areO(1) and approximate the local derivative.
Since the derivative is not defined across the interface, the(uk+1−uk)/1x term is not well
defined. Obviously, this term needs to be modified to give a reasonable approximation of
the derivative near the interface.

The jump condition, [u]0 = 1, implies thatu+(x)− u−(x)= 1 at the interface0. Since
the underlying idea of the Ghost Fluid Method is to apply boundary conditions near the
interface as opposed to applying them at the exact interface location, the jump conditions
are rewritten asu+i − u−i = 1 at every computational grid node. Then for every value ofu−i
inÄ−, one can defineu+i = u−i + 1, including the boundary, whereu+(0)= u−(0)+ 1= 1.
Likewise, for every value ofu+i inÄ−, one can defineu−i = u+i − 1 including the boundary
whereu−(1)= u+(1)− 1= 1. At this point, every grid node has two values for the solution,
u−i andu+i , and one can see from the boundary conditions that the exact solutions areu− = x
on [0, 1] andu+ = x+ 1 on [0, 1]. Furthermore, the jump condition,u+i − u−i = 1, is satisfied
at every grid point and the boundary.
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Two equations from the linear system contain the(uk+1− uk)/1x term, the first term in[(
u+k+1− u−k

1x

)
−
(

u−k − u−k−1

1x

)]/
1x = 0 (10)

and the second term in[(
u+k+2− u+k+1

1x

)
−
(

u+k+1− u−k
1x

)]/
1x = 0, (11)

where the “±” superscripts have been added to emphasize the domain asÄ± for eachui .
Both these equations suffer from the mixing of terms from different domains and are poor
candidates for obtaining the exact solution. The previous paragraph illustrates that Eqs. (10)
and (11) should be replaced by[(

u−k+1− u−k
1x

)
−
(

u−k − u−k−1

1x

)]/
1x = 0 (12)

and

[(
u+k+2− u+k+1

1x

)
−
(

u+k+1− u+k
1x

)]/
1x = 0 (13)

to remove the mixing of the “±” values. The nodal jump conditions imply thatu−k+1=
u+k+1− 1 andu+k = u−k + 1, giving rise to

[((
u+k+1− 1

)− u−k
1x

)
−
(

u−k − u−k−1

1x

)]/
1x = 0 (14)

and [(
u+k+2− u+k+1

1x

)
−
(

u+k+1−
(
u−k + 1

)
1x

)]/
1x = 0 (15)

from Eqs. (12) and (13) as replacements for Eqs. (10) and (11) in the linear system. In
Eqs. (14) and (15) the(uk+1−uk)/1x terms have been modified in a way that makes them
O(1) instead ofO(1/1x).

In general, [u]0 =a(x0), wherex0 is the interface location. The jumps at the grid nodes,
ak=a(xk) andak+1=a(xk+1), and the local values ofφ can be used to interpolate the jump
at the interface as

a0 = ak|φk+1| + ak+1|φk|
|φk| + |φk+1| , (16)

writing [(
(uk+1− a0)− uk

1x

)
−
(

uk − uk−1

1x

)]/
1x = 0 (17)
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and [(
(uk+2− uk+1)

1x

)
−
(

uk+1− (uk + a0)

1x

)]/
1x = 0 (18)

for use in the linear solver. It is interesting to note that one must use the same value ofa0
in both Eq. (17) and Eq. (18). For example, if one were to useak in Eq. (17) andak+1 in
Eq. (18), then the linear system would not have a solution, since the jump at the interface
would not be well defined.

Next, consider the derivative jump condition and rewrite the standard second order dis-
cretization (Eq. (9)) as

(ux)i+1/2− (ux)i−1/2

1x
= 0, (19)

assuming that the derivatives,ux, are known at fluxes and thus subscripted withi ± 1/2.
Once again assume that the interface is located betweenxk and xk+1 and use the sign
of φk+1/2 to determine whether(ux)k+1/2 lies in Ä− or Ä+. For the sake of exposition,
assume that(ux)k+1/2 lies inÄ+. The case where(ux)k+1/2 lies inÄ− is similar and will
be considered shortly.

Consider [u]0 = 0 and [ux]0 = 1 with Dirichlet boundary conditionsu(0)= 0 andu(1)=
1.5 yielding an exact solution ofu= x in [0, 0.5] andu= 2x in (0.5, 1]. The exact
solution dictates that(ux)k−1/2= 1 and (ux)k+1/2= 2 at the fluxes adjacent to the in-
terface producing anO(1/1x) value of [(ux)k+1/2 − (ux)k−1/2]/1x in Eq. (19), while
all the other terms of the form [(ux)i+1/2 − (ux)i−1/2]/1x are identically zero and ap-
proximate the local second derivative. In a more general situation, the terms of the form
[(ux)i+1/2 − (ux)i−1/2]/1x will be O(1) and approximate the nonzero second derivative,
while the [(ux)k+1/2− (ux)k−1/2]/1x term is stillO(1/1x). Since the second derivative is
not defined across the interface, the [(ux)k+1/2− (ux)k−1/2]/1x term is not well defined.

This time only one term of the form of Eq. (19) involves differencing across the interface.
It can be written as

(ux)
+
k+1/2− (ux)

−
k−1/2

1x
= 0 (20)

with the “±” superscripts emphasizing the domain. This equation suffers from the mixing
of terms from different domains and should be replaced by

(ux)
−
k+1/2− (ux)

−
k−1/2

1x
= 0, (21)

where the “−” signs are used forÄ− instead of the “+” signs forÄ+, since this is the
equation foruk which has previously been assumed to be inÄ−. Writing the derivative
jump condition at fluxes implies that(ux)

−
k+1/2= (ux)

+
k+1/2− 1, leading to(

(ux)
+
k+1/2− 1

)− (ux)
−
k−1/2

1x
= 0, (22)

where the modified [(ux)k+1/2− (ux)k−1/2]/1x term isO(1) instead ofO(1/1x).
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In general, [ux]0 = b(x0), wherex0 is the interface location andbk= b(xk) andbk+1=
b(xk+1) can be used to define

b0 = bk|φk+1| + bk+1|φk|
|φk| + |φk+1| (23)

as the jump at the interface, with(
(ux)

+
k+1/2− b0

)− (ux)
−
k−1/2

1x
= 0 (24)

replacing Eq. (22).
Finally consider both jump conditions, [u]0 =a(x0) and [ux]0 = b(x0). Combining

Eqs. (17), (18), and (24) gives[(
(uk+1− a0)− uk

1x
− b0

)
−
(

uk − uk−1

1x

)]/
1x = fk (25)

and [(
uk+2− uk+1

1x

)
−
(

uk+1− (uk + a0)

1x

)]/
1x = fk+1, (26)

where f (x) is no longer set to zero. Note that this particular discretization is based on the
fact that the interface lies betweenxk andxk+1 and thatφk+1/2 implies that the flux located
at xk+1/2 lies inÄ−. If insteadφk+1/2 implies that the flux located atxk+1/2 lies inÄ+ then
Eqs. (25) and (26) are replaced with[(

(uk+1− a0)− uk

1x

)
−
(

uk − uk−1

1x

)]/
1x = fk (27)

and [(
uk+2− uk+1

1x

)
−
(

uk+1− (uk + a0)

1x
+ b0

)]/
1x = fk+1 (28)

for use in the linear system.
Note that Eqs. (25) and (26) can be rewritten as[(

uk+1− uk

1x

)
−
(

uk − uk−1

1x

)]/
1x = fk + a0

(1x)2
+ b0
1x

(29)

and [(
uk+2− uk+1

1x

)
−
(

uk+1− uk

1x

)]/
1x = fk+1− a0

(1x)2
, (30)

while Eqs. (27) and (28) can be rewritten as[(
uk+1− uk

1x

)
−
(

uk − uk−1

1x

)]/
1x = fk + a0

(1x)2
(31)
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and [(
uk+2− uk+1

1x

)
−
(

uk+1− uk

1x

)]/
1x = fk+1− a0

(1x)2
+ b0
1x

(32)

to emphasize that this numerical method yields a linear system with no modifications to
the coefficient matrix. That is, all modifications occur on the right hand side of the linear
system and the coefficients of the unknowns remain equal to those of the standard Laplace
equation on a uniform domain. This allows standard “black box” solvers to be used on the
associated linear system.

3.1.2. Subcell Resolution

Taking the subcell location of the interface into account allows us to discretize the deriva-
tive jump condition more accurately. Assume that the interface lies betweenxk andxk+1

and that [u]0 = 0 and [ux]0 = b0. Then

θ = |φk|
|φk| + |φk+1| (33)

can be used to estimate the subcell interface location. That is, the interface splits this cell
into two pieces of sizeθ1x on the left and size (1− θ)1x on the right. Denoting the value
of u at this subcell interface location byuI and discretizing the jump condition, [ux]0 = b0,
as (

uk+1− uI

(1− θ)1x

)
−
(

uI − uk

θ1x

)
= b0 (34)

allows one to solve foruI as

uI = uk+1θ + uk(1− θ)− b0θ(1− θ)1x (35)

so that approximations to the derivatives on the left and right sides of the interface can be
written as

uI − uk

θ1x
= uk+1− uk

1x
− b0(1− θ) (36)

and

uk+1− uI

(1− θ)1x
= uk+1− uk

1x
+ b0θ, (37)

respectively.
These new approximations allow one to write[(

(uk+1− a0)− uk

1x
− b0(1− θ)

)
−
(

uk − uk−1

1x

)]/
1x = fk (38)

and [(
uk+2− uk+1

1x

)
−
(

uk+1− (uk + a0)

1x
+ b0θ

)]/
1x = fk+1 (39)
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in place of Eqs. (25), (26), (27), and (28), where the position of the interface with regard to
the subcell flux is no longer a consideration. Likewise,[(

uk+1− uk

1x

)
−
(

uk − uk−1

1x

)]/
1x = fk + a0

(1x)2
+ b0(1− θ)

1x
(40)

and [(
uk+2− uk+1

1x

)
−
(

uk+1− uk

1x

)]/
1x = fk+1− a0

(1x)2
+ b0θ

1x
(41)

replace Eqs. (29), (30), (31), and (32).

3.1.3. The Poisson Equation

Consider the one dimensional variable coefficient Poisson equation

(βux)x = f (x) (42)

with fixed Dirichlet boundary conditions on∂Ä and a standard second order discretization
of [

βi+1/2

(
ui+1− ui

1x

)
− βi−1/2

(
ui − ui−1

1x

)]/
1x = fi (43)

for each unknownui . At the fluxes,βi±1/2=β(xi±1/2) are defined in accordance with the
side of the interface the flux is located on as determined byφi±1/2. Note that this produces
a β with no numerical smearing or averaging; i.e.,β may be discontinuous across the
interface. Next consider the jump conditions [u]0 =a(x0) and [βux]0 = b(x0). If φk and
φk+1 indicate that the interface is located betweenxk andxk+1, then Eqs. (16), (23), and
(33) can be used to definea0, b0, andθ .

Once again, taking the subcell location of the interface into account and assuming that
[u]0 = 0 allows one to discretize the jump condition, [βux]0 = b0, as

β+
(

uk+1− uI

(1− θ)1x

)
− β−

(
uI − uk

θ1x

)
= b0 (44)

and solve foruI as

uI = β+uk+1θ + β−uk(1− θ)− b0θ(1− θ)1x

β+θ + β−(1− θ) (45)

so that approximations to the derivatives on the left and right sides of the interface can be
written as

β−
(

uI − uk

θ1x

)
= β̂

(
uk+1− uk

1x

)
− β̂b0(1− θ)

β+
(46)

and

β+
(

uk+1− uI

(1− θ)1x

)
= β̂

(
uk+1− uk

1x

)
+ β̂b0θ

β−
, (47)
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where

β̂ = β+β−

β+θ + β−(1− θ) (48)

defines an effectiveβ.
The discussion above leads naturally to[

β̂

(
(uk+1− a0)− uk

1x
− b0(1− θ)

β+

)
− βk−1/2

(
uk − uk−1

1x

)]/
1x = fk (49)

and [
βk+3/2

(
uk+2− uk+1

1x

)
− β̂

(
uk+1− (uk + a0)

1x
+ b0θ

β−

)]/
1x = fk+1 (50)

as the equations for the unknownsuk anduk+1, respectively. Of course, these can be rewritten
as [

β̂

(
uk+1− uk

1x

)
− βk−1/2

(
uk − uk−1

1x

)]/
1x = fk + β̂a0

(1x)2
+ β̂b0(1− θ)

β+1x
(51)

and[
βk+3/2

(
uk+2− uk+1

1x

)
− β̂

(
uk+1− uk

1x

)]/
1x = fk+1− β̂a0

(1x)2
+ β̂b0θ

β−1x
(52)

to emphasize that this numerical method yields a symmetric linear system withβk+1/2= β̂.

3.1.4. Summary

Consider the variable coefficient Poisson equation

(βux)x = f (x) (53)

with interface jump conditions, [u]0 =a(x0) and [βun]0 = b(x0). In addition, assume
that φ≤ 0 in Ä− and φ >0 in Ä+, so that the unit normal points fromÄ− into Ä+.
SinceN= n1=±1, one can writeun= uxn1 and [βun]0 = [βux]0n1= b(x0). Moreover,
[βux]0 = b(x0)n1.

For each grid pointi , one can write a linear equation of the form[
βi+1/2

(
ui+1− ui

1x

)
− βi−1/2

(
ui − ui−1

1x

)]/
1x = fi + F L + F R (54)

and assemble the system of linear equations into matrix form. Eachβk+1/2 is evaluated
based on the side of the interface thatxk andxk+1 lie on. If xk andxk+1 lie on opposite sides
of the interface, thenβk+1/2 is defined along the lines of Eq. (48) and Eq. (33). First define
φ− andφ+ equal to the values ofφk andφk+1 in the obvious fashion; thenβk+1/2 is defined
as

β+β−(|φ−| + |φ+|)
φ+|φ−| + β−|φ+| . (55)
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Consider the left arm of the stencil, i.e., the line segment connectingxi andxi−1. If both
φi ≤ 0 andφi−1≤ 0 or if bothφi > 0 andφi−1> 0, thenF L = 0. Otherwise, define

θ = |φi−1|
|φi | + |φi−1| (56)

a0 = ai |φi−1| + ai−1|φi |
|φi | + |φi−1| (57)

and

b0 = bi n1
i |φi−1| + bi−1n1

i−1|φi |
|φi | + |φi−1| , (58)

where the normal is calculated at each grid node using central differencing. Ifφi ≤ 0 and
φi−1> 0, then

F L = βi−1/2a0
(1x)2

− βi−1/2b0θ

β+1x
, (59)

otherwise ifφi > 0 andφi−1≤ 0, then

F L = −βi−1/2a0
(1x)2

+ βi−1/2b0θ

β−1x
. (60)

Next consider the right arm of the stencil, i.e., the line segment connectingxi andxi+1.
If both φi ≤ 0 andφi+1≤ 0 or if bothφi > 0 andφi+1> 0, thenF R= 0. Otherwise, define

θ = |φi+1|
|φi | + |φi+1| (61)

a0 = ai |φi+1| + ai+1|φi |
|φi | + |φi+1| (62)

and

b0 = bi n1
i |φi+1| + bi+1n1

i+1|φi |
|φi | + |φi+1| , (63)

where the normal is calculated at each grid node using central differencing. Ifφi ≤ 0 and
φi+1> 0, then

F R = βi+1/2a0
(1x2)

+ βi+1/2b0θ

β+1x
, (64)

otherwise ifφi > 0 andφi+1≤ 0, then

F R = −βi+1/2a0
(1x2)

− βi+1/2b0θ

β−1x
. (65)
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3.2. Two Dimensions

Consider the two dimensional Poisson equation

(βux)x + (βuy)y = f (x) (66)

with interface jump conditions, [u]0 =a(x0) and [βun]0 = b(x0). The unit normal is
N= (n1, n2) with φ≤ 0 in Ä− and φ >0 in Ä+, implying that the unit normal points
fromÄ− intoÄ+.

The normal and tangential derivatives can be defined in terms ofux, uy, andN as

un = uxn1+ uyn2 (67)

and

ut = uxn2− uyn1, (68)

respectively. Then

ux = unn1+ utn
2 (69)

and

uy = unn2− utn
1 (70)

follow directly from Eqs. (67) and (68). Multiplying Eqs. (67) and (68) byβ and taking the
jump across the interface leads to

[βun]0 = [βux]0n1+ [βuy]0n2 (71)

and

[βut ]0 = [βux]0n2− [βuy]0n1; (72)

note thatN is continuous across the interface. In the same fashion,

[βux]0 = [βun]0n1+ [βut ]0n2 (73)

and

[βuy]0 = [βun]0n2− [βut ]0n1 (74)

can be obtained from Eqs. (69) and (70).
Suppose that

[βuy]0 = [βun]0n1 (75)

and

[βuy]0 = [βun]0n2 (76)

are used in place of Eqs. (73) and (74). While Eqs. (75) and (76) are false in general,
they still lead to an identity when plugged into Eq. (71). However, they lead to [βut ]0 = 0
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when plugged into Eq. (72). That is, Eqs. (75) and (76) allow one to correctly capture the
jump in the normal derivative while smearing out the jump in the tangential derivative.
More importantly, Eqs. (75) and (76) allow the derivative jump condition, [βun]0 = b(x0),
to be rewritten as two separate jump conditions, [βux]0 = b(x0)n1 and [βuy]0 = b(x0)n2,
allowing a dimension by dimension application of the numerical method.

In two dimensions, each grid point (i, j ) is discretized as[
βi+1/2, j

(
ui+1, j − ui, j

1x

)
−βi−1/2, j

(
ui, j − ui−1, j

1x

)]/
1x +

[
βi, j+1/2

(
ui, j+1− ui, j

1y

)
−βi, j−1/2

(
ui, j − ui, j−1

1y

)]/
1x = fi, j + Fx + F y (77)

and included in the linear system of equations. Eachβk+1/2, j is evaluated based on the side
of the interface thatxk, j andxk+1, j lie on. If xk, j andxk+1, j lie on opposite sides of the
interface, thenφ− andφ+ are set equal to the values ofφk, j andφk+1, j in the obvious fashion,
andβk+1/2, j is defined according to Eq. (55). Similarly,βi,k+1/2 is defined according toxi,k

andxi,k+1. In addition, note thatFx = F L + F R andF y= F B+ FT .
Consider the left arm of the stencil, i.e., the line segment connectingxi, j and xi−1, j .

If both φi, j ≤ 0 andφi−1, j ≤ 0 or if bothφi, j > 0 andφi−1, j > 0, thenF L = 0. Otherwise,
define

θ = |φi−1, j |
|φi, j | + |φi−1, j | (78)

a0 = ai, j |φi−1, j | + ai−1, j |φi, j |
|φi, j | + |φi−1, j | (79)

and

b0 =
bi, j n1

i, j |φi−1, j | + bi−1, j n1
i−1, j |φi, j |

|φi, j | + |φi−1, j | , (80)

where the components of the normal are calculated at each grid point with central differ-
encing. Ifφi, j ≤ 0 andφi−1, j > 0, then

F L = βi−1/2, j a0
(1x2)

− βi−1/2, j b0θ

β+1x
; (81)

otherwise ifφi, j > 0 andφi−1, j ≤ 0, then

F L = −βi−1/2, j a0
(1x2)

+ βi−1/2, j b0θ

β−1x
. (82)

Consider the right arm of the stencil, i.e., the line segment connectingxi, j andxi+1, j .
If both φi, j ≤ 0 andφi+1, j ≤ 0 or if bothφi, j > 0 andφi+1, j > 0, thenF R= 0. Otherwise,
define

θ = |φi+1, j |
|φi, j | + |φi+1, j | (83)

a0 = ai, j |φi+1, j | + ai+1, j |φi, j |
|φi, j | + |φi+1, j | (84)
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and

b0 =
bi, j n1

i, j |φi+1, j | + bi+1, j n1
i+1, j |φi, j |

|φi, j | + |φi+1, j | , (85)

where the components of the normal are calculated at each grid point with central differ-
encing. Ifφi, j ≤ 0 andφi+1, j > 0, then

F R = βi+1/2, j a0
(1x)2

+ βi+1/2, j b0θ

β+1x
; (86)

otherwise ifφi, j > 0 andφi+1, j ≤ 0, then

F L = −βi+1/2, j a0
(1x)2

− βi+1/2, j b0θ

β−1x
. (87)

Consider the bottom arm of the stencil, i.e., the line segment connectingxi, j andxi, j−1.
If both φi, j ≤ 0 andφi, j−1≤ 0 or if bothφi, j > 0 andφi, j−1> 0, thenF B= 0. Otherwise,
define

θ = |φi, j−1|
|φi, j | + |φi, j−1| (88)

a0 = ai, j |φi, j−1| + ai, j−1|φi, j |
|φi, j | + |φi, j−1| (89)

and

b0 =
bi, j n2

i, j |φi, j−1| + bi, j−1n2
i, j−1|φi, j |

|φi, j | + |φi, j−1| (90)

where the components of the normal are calculated at each grid point with central differ-
encing. Ifφi, j ≤ 0 andφi, j−1> 0, then

F B = βi, j−1/2a0
(1y)2

+ βi, j−1/2b0θ

β+1y
; (91)

otherwise ifφi, j > 0 andφi, j−1≤ 0, then

F B = −βi, j−1/2a0
(1y)2

+ βi, j−1/2b0θ

β−1y
. (92)

Consider the top arm of the stencil, i.e., the line segment connectingxi, j andxi, j+1. If both
φi, j ≤ 0 andφi, j+1≤ 0 or if bothφi, j > 0 andφi, j+1> 0, thenFT = 0. Otherwise, define

θ = |φi, j+1|
|φi, j | + |φi, j+1| (93)

a0 = ai, j |φi, j+1| + ai, j+1|φi, j |
|φi, j | + |φi, j+1| (94)

and

b0 =
bi, j n2

i, j |φi, j+1| + bi, j+1n2
i, j+1|φi, j |

|φi, j | + |φi, j+1| , (95)
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where the components of the normal are calculated at each grid point with central differ-
encing. Ifφi, j ≤ 0 andφi, j+1> 0, then

FT = βi, j+1/2a0
(1y)2

+ βi, j+1/2b0θ

β+1y
; (96)

otherwise ifφi, j > 0 andφi, j+1≤ 0, then

FT = −βi, j+1/2a0
(1y)2

− βi, j+1/2b0θ

β−1y
. (97)

3.3. Three Dimensions

Consider the three dimensional Poisson equation

(βux)x + (βuy)y + (βuz)z = f (x) (98)

with interface jump conditions [u]0 =a(x0) and [βun]0 = b(x0). The unit normal isN=
(n1, n2, n3) with φ≤ 0 inÄ− andφ >0 inÄ+, implying that the unit normal points from
Ä− intoÄ+.

The normal derivative is defined by

un = uxn1+ uyn2+ uzn
3, (99)

leading to

[βun]0 = [βux]0n1+ [βuy]0n2+ [βuz]0n3, (100)

since N is continuous across the interface. Note that [βux]0 = [βun]0n1, [βuy]0 =
[βun]0n2, and [βuz]0 = [βun]0n3 are not identities, but they do lead to the correct jump
condition on the normal derivative when plugged into Eq. (100), although the tangential
derivatives are smeared out. Rewriting [βun]0 = b(x0) as three separate jump conditions,
[βux]0 = b(x0)n1, [βuy]0 = b(x0)n2, and [βuz]0 = b(x0)n3, allows the three dimensional
numerical method to be applied in a dimension by dimension fashion with a discretization
of[
βi+1/2, j

(
ui+1, j − ui, j

1x

)
− βi−1/2, j

(
ui, j − ui−1, j

1x

)]/
1x+

[
βi, j+1/2

(
ui, j+1− ui, j

1y

)
−βi, j−1/2

(
ui, j − ui, j−1

1y

)]/
1x +

[
βi, j+1/2

(
ui, j+1− ui, j

1y

)
−βi, j−1/2

(
ui, j − ui, j−1

1y

)]/
1x = fi, j + Fx + F y + Fz (101)

for the grid point(i, j, k).
The remaining details are left to the reader; they are a straightforward extension of the

two dimensional discretization.
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4. EXAMPLES

4.1. Example 1

Here we consider two examples that were discussed earlier in the text. Consideruxx= 0
on [0, 1] with u(0)= 0 andu(1)= 2. The interface is located atx= 0.5 with [u]= 1 and
[ux]= 0. Figure 1 shows the solution computed with 100 grid points plotted on top of the
exact solution ofu= x to the left ofx= 0.5 andu= x+ 1 to the right ofx= 0.5. In Fig. 2,
the boundary conditions and jump conditions are changed tou(0)= 0, u(1)= 1.5, [u]= 0,
and [ux]= 1. Once again the solution was computed with 100 grid points and plotted on top
of the exact solution ofu= x to the left ofx= 0.5 andu= 2x− 0.5 to the right ofx= 0.5.

FIG. 1. uxx= 0, [u]= 1, [ux]= 0.
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FIG. 2. uxx= 0, [u]= 0, [ux]= 1.

Note the crisp representation of the interface characteristic of the GFM with no numerical
smearing.

4.2. Example 2

Consider (βux)x = f (x) on [0, 1] with u(0)= 0 andu(1)= 0. The interior region is
defined by|x− 0.45| ≤0.15 with the unit normal pointing from the interior region to the
exterior region. On the interior regionβ = 2 and f (x)= (8x2− 4)e−x2

, while on the exterior
regionβ = 1 and f (x)= 0. At x= 0.3, [u]=−e−0.09 and [βun]=−1.2e−0.09, while at
x= 0.6, [u]=−e−0.36 and [βun]= 2.4e−0.36. Figure 3 shows the solution computed with
100 grid points plotted on top of the exact solution ofu(x)= e−x2

on the interior region and
u(x)= 0 on the exterior region.
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FIG. 3. One spatial dimension,∇ · (β∇u)= f (x), [u] 6= 0, [βun] 6= 0.

4.3. Example 3

Consider∇ · (β∇u)= f (x, y) in two spatial dimensions on [0, 1]× [0, 1] with the inter-
face defined by the circle (x− 0.5)2+ (y− 0.5)2= 0.252 with an outward pointing normal
vector,N= (4x− 2, 4y− 2). As an exact solution,u(x, y)= e−x2−y2

on the interior of the
circle andu(x, y)= 0 on the exterior of the circle with the appropriate Dirichlet bound-
ary conditions.β = 2 with f (x, y)= 8(x2+ y2− 1)e−x2−y2

on the interior of the circle and
β = 1 with f (x, y)= 0 on the exterior of the circle. The jump conditions are [u]=−e−x2−y2

and [βun]= 8(2x2+ 2y2− x− y)e−x2−y2
. Figure 4 shows the numerical solution with

61 grid points in each direction and Table I shows the results of numerical accuracy
tests.
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FIG. 4. Two spatial dimensions,∇ · (β∇u)= f (x, y), [u] 6= 0, [βun] 6= 0.

4.4. Example 4

Consider∇ · (β∇u)= f (x, y, z) in three spatial dimensions on [0, 1]× [0, 1]× [0, 1]
with the interface defined by the sphere (x− 0.5)2+ (y− 0.5)2+ (z− 0.5)2= 0.252 with
an outward pointing normal vector,N= (4x− 2, 4y− 2, 4z− 2). As an exact solution,

TABLE I

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
20

0.0088 0.0027 0.0675
1
40

0.0041 1.07 0.0010 1.43 0.0348 0.95
1
80

0.0020 1.04 0.0003 1.73 0.0186 0.90
1

160
0.0011 0.86 0.0001 1.58 0.0108 0.78
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FIG. 5. Three spatial dimensions (cross section),∇ · (β∇u)= f (x, y, z), [u] 6= 0, [βun] 6= 0.

u(x, y, z)= e−x2−y2−z2
on the interior of the sphere andu(x, y, z)= 0 on the exterior of

the sphere with the appropriate Dirichlet boundary conditions.β = 2 with f (x, y, z)=
8(x2+ y2+ z2− 3

2)e
−x2−y2−z2

on the interior of the sphere andβ = 1 with f (x, y, z)= 0 on
the exterior of the sphere. The jump conditions are [u]=−e−x2−y2−z2

and [βun]= 8(2x2+
2y2+ 2z2− x− y− z)e−x2−y2−z2

. Figure 5 shows theu(x, y, z= 0.4) cross-section of the
numerical solution with 61 grid points in each direction and Table II shows the results of
numerical accuracy tests for the two dimensional slice of data.

4.5. Example 5

This example was taken from [10]. Consider1u= 0 in two spatial dimensions on
[−1, 1]× [−1, 1] with the interface defined by the circlex2+ y2= 0.52 with an outward
pointing normal vector,N= (2x, 2y). As an exact solution,u(x, y)= 1 on the interior of
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TABLE II

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
20

0.0064 7.49e-4 0.0335
1
40

0.0035 0.87 2.37e-4 1.66 0.0142 1.24
1
80

0.0023 0.54 1.01e-4 1.23 0.0074 0.94
1

160
0.0015 0.68 4.66e-5 1.12 0.0049 0.59

the circle andu(x, y)= 1+ ln(2
√

x2+ y2) on the exterior of the circle with the appropri-
ate Dirichlet boundary conditions. The jump conditions are [u]= 0 and [un]= 2. Figure 6
shows the numerical solution with 61 grid points in each direction and Table III shows the
results of numerical accuracy tests.

FIG. 6. Two spatial dimensions,1u= 0, [u]= 0, [un] 6= 0.
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TABLE III

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
10

0.0326 0.0299 0.1240
1
20

0.0130 1.33 0.0111 1.43 0.0463 1.42
1
40

0.0050 1.38 0.0040 1.47 0.0167 1.47
1
80

0.0019 1.40 0.0014 1.51 0.0060 1.48

4.6. Example 6

This example was taken from [10]. Consider1u= 0 in two spatial dimensions on
[−1, 1]× [−1, 1] with the interface defined by the circlex2+ y2= 0.52 with an outward
pointing normal vector,N= (2x, 2y). As an exact solution,u(x, y)= ex cos(y) on the

FIG. 7. Two spatial dimensions,1u= 0, [u] 6= 0, [un] 6= 0.
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TABLE IV

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
10

0.0153 0.0054 0.1380
1
20

0.0081 0.92 0.0022 1.30 0.0703 0.97
1
40

0.0044 0.88 0.0009 1.29 0.0370 0.93
1
80

0.0023 0.94 0.0003 1.59 0.0209 0.82

interior of the circle andu(x, y)= 0 on the exterior of the circle with the appropriate Dirichlet
boundary conditions. The jump conditions are [u]=−ex cos(y) and [un]= 2ex(y sin(y)−
x cos(y)). Figure 7 shows the numerical solution with 61 grid points in each direction and
Table IV shows the results of numerical accuracy tests.

FIG. 8. Two spatial dimensions,1u= 0, [u] 6= 0, [un] 6= 0.
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TABLE V

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
10

0.0068 0.0033 0.0770
1
20

0.0033 1.04 0.0014 1.24 0.0337 1.19
1
40

0.0014 1.24 0.0005 1.49 0.0169 1.00
1
80

0.0008 0.81 0.0002 1.32 0.0108 0.65

4.7. Example 7

This example was taken from [10]. Consider1u= 0 in two spatial dimensions on
[−1, 1]× [−1, 1] with the interface defined by the circlex2+ y2= 0.52 with an outward
pointing normal vector,N= (2x, 2y). As an exact solution,u(x, y)= x2− y2 on the inte-
rior of the circle andu(x, y)= 0 on the exterior of the circle with the appropriate Dirichlet
boundary conditions. The jump conditions are [u]= y2− x2 and [un]= 4(y2− x2).
Figure 8 shows the numerical solution with 61 grid points in each direction and Table V
shows the results of numerical accuracy tests.

4.8. Example 8

This example was taken from [11]. Consider∇ · (β∇u)= f (x, y) in two spatial dimen-
sions on [−1, 1]× [−1, 1]. The interface is defined by the collection of points(x(θ), y(θ)),
where x(θ)= 0.02

√
5+ (0.5+ 0.2 sin(5θ)) cos(θ), y(θ)= 0.02

√
5+ (0.5+ 0.2 sin(5θ))

sin(θ), θ ∈ [0, 2π ], and the unit normal,N= (n1, n2) is assumed to point from the in-
terior region to the exterior region. As an exact solution,u(x, y)= x2+ y2 on the inte-
rior region andu(x, y)= 0.1(x2+ y2)2− 0.01 ln(2

√
x2+ y2) on the exterior region with

the appropriate Dirichlet boundary conditions.β = 1 with f (x, y)= 4 on the interior
region andβ = 10 with f (x, y)= 16(x2+ y2) on the exterior region. The jump condi-
tions are [u]= 0.1(x2+y2)2− 0.01 ln(2

√
x2+ y2)− (x2+ y2) and [βun]= (4(x2+ y2)−

0.1(x2+ y2)−1− 2)(xn1+ yn2). Figure 9 shows the numerical solution with 61 grid points
in each direction and Table VI shows the results of numerical accuracy tests.

4.9. Example 9

This example was taken from [11]. Consider∇ · (β∇u)= f (x, y) in two spatial
dimensions on [−1, 1]× [0, 3]. The interface is defined by the collection of points(x(θ),
y(θ)), where x(θ)= 0.6 cos(θ)− 0.3 cos(3θ), y(θ)= 1.5+ 0.7 sin(θ)− 0.07 sin(3θ)+
0.2 sin(7θ), θ ∈ [0, 2π), and the unit normal,N= (n1, n2), is assumed to point from the
interior region to the exterior region. As an exact solution,u(x, y)= ex(x2 sin(y)+ y2) on
the interior region andu(x, y)=−(x2+ y2) on the exterior region with the appropriate

TABLE VI

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
10

4.90e-4 3.69e-4 0.0610
1
20

3.20e-4 0.61 1.53e-4 1.27 0.0221 1.46
1
40

1.67e-4 0.94 8.49e-5 0.85 0.0079 1.48
1
80

7.35e-5 1.18 3.64e-5 1.22 0.0028 1.50
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FIG. 9. Two spatial dimensions,∇ · (β∇u)= f (x, y), [u] 6= 0, [βun] 6= 0.

Dirichlet boundary conditions.β = 1 with f (x, y)= ex(2+ y2+ 2 sin(y)+ 4x sin(y)) on
the interior region andβ = 10 with f (x, y)=−40 on the exterior region. The jump condi-
tions are [u]=−(x2+ y2)− ex(x2 sin(y)+ y2)and [βun= (−20x− ex((x2+ 2x) sin(y)+
y2))n1+ (−20y− ex(x2 cos(y)+ 2y))n2. Figure 10 shows the numerical solution with

TABLE VII

1x L∞-error inU Order L2-error inU Order L2-error in∇ ·U Order

1
10

0.2437 0.1136 1.3141
1
20

0.1534 0.67 0.0666 0.77 0.7969 0.72
1
40

0.0498 1.62 0.0189 1.82 0.2798 1.51
1
80

0.0358 0.48 0.0082 1.20 0.1992 0.49
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FIG. 10. Two spatial dimensions,∇ · (β∇u)= f (x, y), [u] 6= 0, [βun] 6= 0.

61 grid points in thex-direction and 91 grid points in they-direction. Table VII shows
the results of the numerical accuracy tests.
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